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Abstract. The influence of noise-flatness on overdamped motion of Brownian particles in a 1D periodic
system with a simple sawtooth potential subjected to both unbiased thermal noise and three-level telegraph
noise is considered. The exact formula for the stationary probability flux (current) is presented. The
phenomenon of multiple current reversals and some topological properties of the hypersurface of zero
current in the parameter space of noises are investigated and illustrated by phase diagrams. The conditions
for the existence of four current reversals versus the switching rate of nonequilibrium noise are given. An
alternative interpretation of the results in terms of cross-correlation between two dichotomous noises is
presented.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion –
05.60.-k Transport processes – 02.50.Ey Stochastic processes

1 Introduction

Recently, the noise-induced anomalous transport phenom-
ena of Brownian particles in nonlinear periodic structures
have been the topic of a number of physical investigations.
Among them, we can mention the ratchet effect [1,2], hy-
persensitive response [3], absolute negative mobility [4],
giant amplification of diffusion and noise enhanced stabil-
ity [5], to name but a few. Active analytical and numerical
studies of various models in this field were stimulated by
their possible applications in chemical physics, molecular
biology, nanotechnology, and for separation techniques of
nanoobjects [2,6,7].

The recent boom of the ratchet effect, i.e., directed mo-
tion of Brownian particles in spatially periodic structures
induced by nonequilibrium fluctuations, with no macro-
scopic driving applied, started in 1993 with Magnasco’s
theoretical work [1]. The initial motivation in this field
has come from biology, in particular from the studies
of the mechanism of vesicle transport inside eukaryotic
cells [1,8]. Beyond that, it was suggested that the ratchet
mechanism can be used for obtaining efficient separation
methods of nanoscale objects, e.g., DNA molecules, pro-
teins, viruses, etc. [2,9,10]. The classification of differ-
ent types of ratchets (correlation, flashing, etc.) can be
found in reference [2]. To date, the feasibility of particle
transport by man-made devices has been experimentally
demonstrated for several ratchet types [7,10,11].
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It should be noted that the dynamics in ratchet struc-
tures with its inherent spatial asymmetry generally ex-
hibits a rich complexity, such as the occurrence of multiple
current reversals (CRs) and multipeaked current charac-
teristics [2,12]. The models with CRs are potentially very
useful, because, compared to the models with no CRs, CRs
could lead to more efficient fluctuation-induced separation
of particles [2]. In this context, the CRs phenomenon is one
of the most interesting aspects of the theory of Brownian
ratchets. It has been shown that the CR effect is attainable
in various ways, including variations of the flatness pa-
rameter of noise [13–15], the correlation time of nonequi-
librium fluctuations [16], the temperature in multinoise
cases [17,18], the power spectrum of the noise source [19],
the shape of the potential [20], the number of interacting
particles per unit cell [21], the mass of the particles [22],
the intensity of cross-correlation between noises [23], etc.

In some of our earlier papers on the subject [18,24,25]
we have considered a correlation ratchet in which Brown-
ian particles are subjected to both a thermal equilibrium
noise and a symmetric three-level telegraph process (tri-
chotomous noise). Addressing the case in which the tele-
graph noise is very flat, we have shown that the transport
direction of Brownian particles can be controlled by ther-
mal noise even if the transport is induced by symmetric
trichotomous noise. On the basis of the large-flatness limit
we have also established a number of cooperation effects.
Namely, for certain values of the system parameters there
occur more than two CRs versus the switching rate and
temperature of noise, and at large spatial asymmetries the
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current exhibits characteristic “disjunct windows” (DWs)
with respect to the switching rate and temperature; within
DWs the direction of the current is opposite to that in the
surroundings. The advantage of such a multinoise model
involving thermal noise is that the temperature as the con-
trol parameter can be easily varied both in experiments
and in potential technological applications.

However, within the framework of the calculation
scheme of references [18,24,25], the absolute value of the
net current is inversely proportional to a large value of
the flatness parameter of trichotomous noise, hence the
absolute value of the current is very small (infinitesimal).
So, the results of references [24,25] are mainly of theoret-
ical interest, while applications are possible at moderate
(finite) values of flatness. Thus papers [24,25] leave open
the fundamental question, both from the theoretical and
practical viewpoints, whether the phenomena of DWs and
four CRs versus the switching rate of noise can also oc-
cur in the case of finite values of the flatness parameter.
The question is addressed in the present paper and the
answer is affirmative, which is a crucial result allowing, in
practice, to build up effective separation mechanisms of
nanoparticles and, in theory, interrelating the phenomena
of DWs and multiple (more than two) CRs.

So in the present paper we considerably generalize the
model used in reference [18], enlarging the dimension of
the system parameter space by one. Namely, in our cal-
culations we allow the flatness parameter to take any val-
ues (including moderate ones)and a new interpretation of
the results in terms of cross-correlation between two di-
chotomous noises is presented. Making the model more
general and intricate enables us to understand the inter-
relationship of some effects which formerly stood apart
and thereby reveal some new features. Thus we consider
one-dimensional overdamped dynamical systems in which
Brownian particles move on a spatially periodic piece-
wise linear asymmetric potential which has one minimum
per period. The applied force consists of an additive noise
term composed of a thermal noise and of a trichotomous
noise. The trichotomous process is a symmetric three-level
stationary telegraph process characterized by three pa-
rameters: amplitude, correlation time, and flatness [18,26].

One of the main purposes of this paper is to provide
an exact formula for the analytic treatment of the depen-
dence of the stationary current on various system param-
eters (viz., temperature, potential asymmetry, correlation
time, flatness, and noise amplitude). We shall show that
at moderate values of the flatness parameter there indeed
exist certain ranges of flatness values where the phenom-
ena of DWs and four CRs versus the switching rate occur
and are interrelated. We shall also derive the necessary
conditions for the existence of these effects. It is remark-
able that in the region of the parameter space where the
DWs exist at moderate flatness the maximal value of the
current occurs. Moreover, contrary to the case of large
flatness where the DWs are possible only at very large
asymmetries of the sawtooth-like potential profile, in the
cases considered in the present paper such strong restric-
tion to the potential profile is absent.

Actually, in our earlier papers on the subject we were
able to calculate the particle current and other relevant
quantities only in certain relative units and thus to provide
only a qualitative description of the behaviour of the sys-
tem. The present generalized model allows us treat mod-
erate flatness and thus to calculate the concrete numerical
values of the relevant quantities. For example, as we will
see below, for particles of radius 10−8 m (e.g. kinesins) in
water at room temperature for the ratchet system of the
spatial period 100 times greater than the particle radius it
follows that in the region of the DWs at moderate flatness
the maximal mean value of particles’ velocity is in order
of magnitude 10 µm/s.

The structure of the paper is as follows. In Section 2
we present the model investigated in this work. A mas-
ter equation description of the model is given, the cor-
responding exact stationary solution is discussed, and an
exact formula for the current is found and provided. In
Section 3 we study the phenomena of DWs and four CRs:
analyze the behavior of the current, give the sufficient con-
ditions for the existence of DWs and 4CRs, and demon-
strate that the phenomena of DWs and 4CRs are interre-
lated. This section provides also a new interpretation of
the results in terms of cross-correlation between two di-
chotomous noises. Section 4 contains concluding remarks;
also possible applications are discussed. In Appendix a
short review of the behavior of the current at different
limits (such as the slow-noise limit, fast-noise limit) and
low-temperature case, is presented.

2 Model and the exact solution

We consider overdamped motion of Brownian particles
in the one-dimensional spatially periodic potential Ṽ =
Ṽ (x̃ + L) with period L and barrier height Ṽ0 = Ṽmax −
Ṽmin. The additional force consists of the thermal noise
ξ̃(t̃) with temperature T , and the colored three-level
Markovian noise Z̃(t̃). The system is described by the
stochastic differential equation

κ
dX̃

dt̃
= −dṼ (X̃)

dX̃
+ ξ̃(t̃) + Z̃(t̃), (1)

where κ is the friction coefficient. The thermal fluc-
tuations ξ̃(t̃) are modeled by the zero-mean Gaussian
white noise with the correlation function 〈ξ̃(t̃1)ξ̃(t̃2)〉 =
2κkBTδ(t̃1 − t̃2), where kB is the Boltzmann constant.
Regarding the random function Z̃(t̃), we assume it to
be a zero-mean trichotomous Markovian stochastic pro-
cess [18,26] which consists of jumps between the three
values z̃1 = −ã, z̃2 = 0, z̃3 = ã. The jumps follow one
another in time according to a Poisson process, while
the three values occur with the stationary probabilities
Ps(z̃1) = Ps(z̃3) = q and Ps(z̃2) = 1 − 2q. In the station-
ary case the fluctuation process satisfies 〈Z̃(t̃)〉 = 0 and
〈Z̃(t̃1)Z̃(t̃2)〉 = 2qã2 exp(−ν̃ | t̃1− t̃2 |), where the switch-
ing rate ν̃ is the reciprocal of the noise correlation time
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τ̃c = 1/ν̃. The probabilities Wn(t̃) that Z̃(t̃) is in the state
n at the time t̃ evolve according to the master equation

d

dt̃
Wn(t̃) = ν̃

3∑

m=1

ŨnmWm(t̃), (2)

where

Ũ =

⎛

⎜⎝

q − 1 q q

1 − 2q −2q 1 − 2q

q q q − 1

⎞

⎟⎠ .

The trichotomous stochastic process is a particular case
of the kangaroo process [14] with flatness parameter ϕ =
〈Z4(t)〉/〈Z2(t)〉2 = 1/(2q).

By applying a scaling of the following form:

X =
X̃

L
, V (x) =

Ṽ (x̃)
Ṽ0

, t =
t̃

t0
, ξ =

Lξ̃

Ṽ0

, Z =
LZ̃

Ṽ0

,

(3)
we obtain a dimensionless formulation of the dynamics
in the potential V with the property V (x) = V (x − 1).
Choosing t0 = κL2/Ṽ0, the dimensionless friction coeffi-
cient turns to unity and the quantities determining the
rescaled noises reduce to

ν =
κL2ν̃

Ṽ0

, a =
ãL

Ṽ0

, D =
kBT

Ṽ0

, (4)

where 2D is the strength of the rescaled zero-mean
Gaussian white noise ξ(t). For brevity, in what follows
we shall call D simply temperature. The dimensionless
dynamics is described by the differential equation

dX

dt
= h(X) + ξ(t) + Z(t), h(x) ≡ −dV (x)

dx
. (5)

The two-dimensional process {x(t), z(t)} is Markovian and
its joint probability densities Pn(x, t) for the position vari-
able x(t) and the fluctuation variable z(t) obey the master
equation of the form

∂

∂t
Pn(x, t) = − ∂

∂x
jn(x, t)

− ν

[
Pn(x, t) − Ps(zn)

3∑

m=1

Pm(x, t)

]
, (6)

where n = 1, 2, 3, and

jn(x, t) = [h(x) + zn]Pn(x, t) − D
∂

∂x
Pn(x, t) (7)

are the current densities in the states (x, zn).
The stationary current J is then evaluated via the cur-

rent densities

J =
3∑

n=1

js
n(x), js

n(x) =
(

h(x) + zn − D
∂

∂x

)
P s

n(x),

(8)

where P s
n(x) are the stationary probability densities for

the states (x, zn). It follows from equation (6) that the
current J is constant. To derive an exact formula for J ,
we perform an analysis of the system of equation (6) using
a piecewise linear sawtooth-like potential:

V (x) =

{−(x − d)/d, x ∈ (0, d) mod 1,

(x − d)/(1 − d), x ∈ (d, 1) mod 1,
(9)

with d ∈ (0, 1/2).
The h(x) being periodic, the stationary distributions

P s
n(x) as solutions of the system of equation (6) are also

periodic and it suffices to consider the problem in the in-
terval [0, 1). The force corresponding to the sawtooth po-
tential (9) is

h(x) =

{
h0 := 1/d, x ∈ (0, d),

h1 := −1/(1 − d), x ∈ (d, 1).
(10)

As the force h(x) is piece-wisely constant, equation (6)
splits up into two linear differential equations with con-
stant coefficients for the two vector functions Ps

i (x) =
(P s

1i, P
s
2i, P

s
3i), i = 0, 1, defined on the intervals (0, d) and

(d, 1), respectively. The solution reads as

P s
ni(x) = Ps(zn)

[
J

hi
+

5∑

k=1

CikAnik exp
(

λikx

D

)]
, (11)

where n = 1, 2, 3, i = 0, 1, k = 1, . . . , 5, Cik are constants
of integration,

Anik = [λik(hi + zn − λik) + νD]−1, (12)

and {λik, k = 1, . . . , 5} is the set of roots of the algebraic
equation

λ5
i −3hiλ

4
i +(3h2

i −a2−2νD)λ3
i +(4Dν+a2−h2

i )hiλ
2
i

+ νD(νD − 2h2
i + 2qa2)λi − D2ν2hi = 0. (13)

Ten independent conditions, for the ten constants of inte-
gration Cik and the current J , can be established by re-
quiring continuity and periodicity of the quantities Ps

i (x)
and js

ni(x) at the points of discontinuities, that is,

P s
n0(d) = P s

n1(d), P s
n0(0) = P s

n1(1),

js
n0(d) = js

n1(d), js
n0(0) = js

n1(1), n = 1, 2, 3. (14)

As it follows from equation (6) that J = const, the sys-
tem of linear algebraic equations (14) contains only ten
linearly independent equations. By including the follow-
ing eleventh equation (i.e., normalization condition):

3∑

n=1

∫ 1

0

P s
n(x)dx = 1, (15)

a complete set of conditions is obtained for determining
the ten constants of integration Cik and the current J .
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This procedure leads to an inhomogeneous set of eleven
linear algebraic equations. Now the current J can be ex-
pressed as a quotient of two determinants of the eleventh
degree:

J =
det[Blr(1 − δr,1) + δl,11δr,1]

det(Blr)
, (16)

where the matrix (Blr) (with l, r = 1, . . . , 11) is defined
as follows:

Bn+3 1 = Bn 1 =
1
h0

− 1
h1

, Bn+6 1 = B10 1 = 0,

B11 1 =
d

h0
+

1 − d

h1
, Bn k+5i+1 = Anik exp

(
λikd

D

)
,

Bn+3 k+5i+1 = Anik exp
(

λik

D
δi,1

)
,

Bm+6 k+5i+1 = (hi − λik)Bm k+5i+1,

Bm+8 k+5i+1 = (hi − λik)Bm+3 k+5i+1,

B11 k+5i+1 =
D

λik

3∑

n=1

Ps(zn)(Bn k+5i+1 − Bn+3 k+5i+1),

(17)

with n = 1, 2, 3, m = 1, 2, k = 1, . . . , 5, i = 0, 1. Here δl, r

is the Kronecker symbol, and the quantities Anik and λik

are the same as in equation (11).

3 Results: four current reversals and disjunct
“windows”

The quantity of central interest to us is the average
particle current J and its response to the switching
rate ν. Figure 1 exhibits the level curves of zero current,
J(D, ν; d, a, q) = 0, for fixed d and q at various values of
a = const. The level curves may be considered as func-
tions D = D(ν), with a, d, and q being parameters. In
Figures 1a and 1b the level curves at the top close to the
larger finite values of temperature D (not shown), whereas
in all the panels both branches of the level curves on the
right approach zero as ν grows. Regarding the zeros of the
function D(ν): if a < a0(q, d) (see Eq. (23) in Appendix),
then D becomes zero only at the limit ν → ∞; if q < 0.25
and a1(q, d) > a > a0(q, d), (see Eq. (24) in Appendix),
then D approaches zero at two finite values of the switch-
ing rate ν; whereas if a > a1(q, d), there is only one zero at
a finite value of ν. In view of this, two types of level curves
are distinguishable in Figure 1: namely, the connected ones
(e.g., curves 2 and 3 in Fig. 1a) and the ones comprising
two components, viz., a closed curve and a curve whose
one end is open (e.g., curve 1 in Fig. 1a). There is one
very special level curve (e.g., curve 5 in Fig. 1b) which
intersects itself at the saddle point. Let us note that in
the case of Figure 1c both branches of the level curves on
the right approach zero only at the limit ν → ∞.

Using Figure 1 as a visual aid, we will now examine
DWs in the region of noise parameters, where q < 0.25
and a < a0(q, d). As mentioned above, the current exhibits
characteristic disjunct zones of temperature and switching

Fig. 1. The level curves J(D, ν) = 0 at d = 0.007. The noise
amplitude a and the transition probability q have the following
values: (1) a = 22; (2) a = 23; (3) a = 26; (4) a = 89.5;
(5) a = 103.5; (6) a = 117.5; (7) a = 177; (8) a = 235; and
(a) q = 0.0003, (b) q = 0.1, (c) q = 0.2.

Fig. 2. Four current reversals vs. the switching rate ν. For
all the curves d = 0.1, q = 0.159, and a = 13.1. Solid line (1):
D = 0.081. Dotted line (2): D = 0.10147. Dashed line (3): D =
0.04807. The current J = J(ν) is computed by means of the
exact equation (16). Note the occurrence of the phenomenon
of 4CRs in the case of curve 1. The inset depicts curve 1 in the
region of the fourth current reversal.

rate on the borders of which CRs occur. That is, for certain
values of (d, a, q) there exist closed curves in the plane
(D, ν; D �= 0) on which CRs take place (see Fig. 1). The
closed curves encircle the regions where the direction of
the current is negative, whereas in the surrounding regions
the current direction is positive (see also Fig. 2).

The DWs exist if the surface J(D, a, ν) = 0 (with fixed
parameters d = const. and q = const.) has a local ex-
tremum at the noise amplitude aex(q, d), a saddle point
at the noise amplitude as(q, d), and a < a0(q, d) (see also
Fig. 3 and Eq. (23) in Appendix). By varying a, d, and q
step by step, we will obtain all the values of d, q, and a
in case of which the DWs exist: to every point within the
shaded regions in Figure 4 corresponds one closed curve
on which J(D, ν) = 0. For fixed q, the region of the DWs
shrinks to a critical four-point C, which is characterized
by the coordinates: dc(q), ac(q), Dc(q), and νc(q). The val-
ues dc(q) and ac(q) are respectively the upper and lower
values of the parameters for the DWs to occur, i.e., the
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Fig. 3. The surface of current reversals J(D, a, ν) = 0 at d =
0.007 and q = 0.1. The coordinates of the extremum point are
a = 82.5, D = 0.46, and ln ν = 8.5, whereas those of the saddle
point are a = 103.5, D = 0.30, and ln ν = 5.5.

Fig. 4. The necessary and sufficient condition for the existence
of the DWs. The transition probability has the following values:
(1) q → 0; (2) q = 0.05; (3) q = 0.10; and (4) q = 0.168. The
inset presents the necessary and sufficient condition for the
existence of the DWs for the value of the transition probability
q = 0.2.

phenomenon is possible if d ∈ (0, dc) and a ∈ (ac,∞) (see
Fig. 4). Let us emphasize that the critical parameters dc

and ac depend only on the parameter q describing the
flatness of nonequilibrium noise.

In Figure 5 we have plotted the critical parameters
dc and ac as functions of the flatness parameter ϕ, q =
1/(2ϕ). For increasing values of q the critical amplitude
ac(q) starts from the value ac(0) ≈ 19.4, and grows to
the local maximum ac max ≈ 39.6 at q ≈ 0.084. Next it
decreases, attaining the local minimum ac min ≈ 4.4 at
q ≈ 0.178, and then approaches the value ac(0.25) ≈ 230
as q → 0.25. The critical asymmetry parameter dc(q) ex-
hibits a bell-shaped form as q is varied: the parameter
dc increases from 0.009 to 0.5 if q grows from zero to
0.178, and then decreases to dc(0.25) ≈ 0.007 as q → 0.25.
The sufficient conditions for the existence of DWs effect
at different values of the parameter q are shown in Fig-
ure 4 by the shaded wedge-shaped areas in the plane
(a, d). The lower border of the shaded region is determined
by the curve a = aex(q, d) with fixed q. In the context of

Fig. 5. The critical values of the parameters for the DWs effect
to occur: ac and dc vs. q. The DWs phenomenon is possible if
d ∈ (0, dc) and a ∈ (ac,∞).

the upper borders the following characteristic regions can
be discerned for noise-flatness:

(i) if q < 0.178, the upper border consists of two lines.
In the neighborhood of the critical point C the up-
per border is determined by a = as(q, d) whereas if
d < d0, d0 is the solution of the equation as(q, d0) =
a0(q, d0), that is given by a = a0(q, d). At the critical
point C the saddle and extremum points merge;

(ii) in the case of 0.25 > q > 0.178, the values of the
amplitude as(q, d) are always greater than a0(q, d),
i.e., as(q, d) > a0(q, d). Hence, in this case the upper
border is given by the curve a = a0(q, d) with fixed q
(cf. also Fig. 1c).

Let us note that DWs can also appear for q > 0.25 as well
as for a > a0(q, d), but if q > 0.25 the phenomenon of
4CRs is absent. An important observation here is that the
phenomenon of DWs will occur only if the noise-flatness
ϕ is greater than 1.695.

Turning to the four-current-reversal effect as a func-
tion of the switching rate ν (see Fig. 2), the effect occurs
only if q < 1/4. In a general case, depending on the values
of noise-flatness, the four-current-reversals can be realized
in two ways. In the case of large flatness, q < 0.015, the
four CRs effect exists if the upper branch of the function
D = D(ν), which describes the level curve in Figure 1, has
a local minimum (e.g., the curve (1) in Fig. 1a). For mod-
erate flatness the phenomenon of four CRs is associated
with DWs [see Figs. 1b and 1c]. Figure 6a shows a phase
diagram in the (q, a) plane at D = 0.08 and d = 0.002. To
the regime where four CRs occur at fixed values of d and
D in the figure correspond two disconnected regions: the
large boomerang-like shaded arc and the small comma-like
stroke/dash at the horizontal coordinate axis. (In our ear-
lier papers on the subject [24,25] we observed the 4CRs ef-
fect only in the infinitesimal parts of the small comma-like
regions.) In the large boomerang-like shaded region the
current reversals are associated with the DWs effect. No-
tably, as a rule, in the finite interval of the flatness param-
eter the 4CRs effect is absent [e.g., 0.0122 < q < 0.0238
in Fig. 6a]. An interesting circumstance about the phase
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Fig. 6. The necessary and sufficient condition for the existence
of the 4CRs effect. The asymmetry parameter and temperature
have the following values: (a) d = 0.002, D = 0.08; (b): (1) d =
0.050, D = 0.1014; (2) d = 0.005, D = 0.0955; (3) d = 0.0002,
D = 0.0931; (4) d = 0.00001, D = 0.09268.

diagrams in Figure 6 is that the characteristic tempera-
ture D∗, at which the upper “bottle-neck” between the re-
gions with no current reversals and with 4CRs disappears,
is a slowly varying function of the asymmetry parame-
ter d. For example, in the interval 0.05 > d > 10−5, the
temperature D∗ grows monotonically from D = 0.0927 to
D = 0.1014 as the asymmetry parameter increases [see
Fig. 6b]. The tendency that is apparent in Figure 6b,
namely, a decrease in the flatness interval between the
domains with 4CRs as the asymmetry of the potential
grows, is also valid for lower asymmetries (d > 0.005).
An important observation here is that the growth of the
potential asymmetry will increase the region of the phase
space (q, a) where the 4CRs with DWs effect appear.

It is amusing to note that in a very narrow region
of the parameter space an extra interaction takes place
and the effect of six current reversals versus the switching
rate occurs (see Fig. 7). In this region the boomerang-like
formation 4 intersects the comma-like stroke 4 (see the
right-hand bottom of Fig. 6b). The region is determined
by the following values of the parameters: d ≈ 0.00001,
q ≈ 0.00066, a ≈ 17240, and D ≈ 0.0927.

It is interesting that the results of the present paper
can be interpreted in terms of cross-correlation intensity
between two dichotomous noises. Namely, the trichoto-
mous noise Z(t) in equation (5) can be presented as the
sum of two cross-correlated zero-mean symmetric dichoto-
mous noises Z1(t) and Z2(t), i.e., Z(t) = Z1(t) + Z2(t).

The dichotomous noises Z1(t) and Z2(t) are character-
ized as follows: z1, z2 ∈ { 1

2a,− 1
2a} with ν1 = ν2 = ν and

Fig. 7. Six current reversals vs. the switching rate ν. For all
the curves d = 0.00001, q = 0.00066, and a = 17240. Dashed
line (1): D = 0.09258. Solid line (2): D = 0.09268. Dotted line
(3): 0.09278. The absolute minima (not shown in the figure)
of all the three curves occur within the range 14.35 < ln ν <
14.40, whereas −0.121 < J < −0.119. Note that the scaling is
different along the axes of the two insets.

the correlation function

〈Zi(t′)Zj(t)〉 = ρij
a2

4
e−ν|t−t′|, i, j = 1, 2, (18)

where ρii = 1, and ρij = ρ ∈ (−1, 1) with i �= j is the
cross-correlation intensity of the noises Z1 and Z2. In this
case the probability q = (1 + ρ)/4, from which it follows
that the correlation coefficient ρ and the flatness ϕ of the
trichotomous noise Z(t) must be related as ρ = (2−ϕ)/ϕ.
It is obvious that the critical noise-flatness ϕ = 2 corre-
sponds to ρ = 0, i.e., to the case of two statistically in-
dependent dichotomous noises. Hence the necessary con-
dition for the existence of four CRs with DWs considered
in the present paper is that the correlation intensity ρ
is negative. Let us note that such a cross-correlation be-
tween dichotomous noises may result from the following
two reasons: the two noises are either partly of the same
origin or are influenced by the same factors. Notably, the
phenomenon of cross-correlation-induced current reversals
has earlier been considered in the context of qualitatively
different ratchet models with multiplicative and additive
noises [23].

4 Discussion and concluding remarks

We have provided the exact formula (16) for the current J
of overdamped Brownian particles in a sawtooth ratchet
potential subjected to both thermal noise and additive
zero-mean trichotomous noise. A major virtue of the pro-
posed model is that an interplay of symmetric three-level
colored and thermal noises in ratchets with simple asym-
metric sawtooth potentials can generate a rich variety of
cooperation effects, e.g., multiple current reversals (more
than two) versus noise correlation time and disjunct “win-
dows” of temperature and switching rate where the direc-
tion of the current is opposite to that in the surroundings.
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The major results of the present paper establish the
effects of both 4CRs and DWs at moderate values of noise-
flatness, (see also Figs. 1 and 2). We emphasize that both
phenomena occur only if the flatness parameter ϕ > 1.
Thus, in the case of the symmetric dichotomous noise (ϕ =
1) the effects of DWs and 4CRs are not possible. Notably,
as a rule, for moderate values of flatness (50 > ϕ > 2),
the phenomenon of four current reversals is related to the
effect of disjunct “windows”.

Though we are not aware of any simple physical ex-
planation for the above-mentioned effects, the distinct be-
haviors of the currents induced by dichotomous and tri-
chotomous noises are not surprising if we remember that
there is the so-called flashing barrier effect at ϕ > 1, which
generates a counter current induced by dichotomous noise.
An excellent explanation for the flashing barrier effect can
be found in reference [13].

The sufficient conditions for the existence of DWs and
4CRs at different values of the flatness parameter are
shown in Figures 4 and 6, respectively. Two circumstances
should be pointed out: (i) there is the lower limit of noise-
flatness, namely ϕ = 2, beyond which the phenomenon
of 4CRs disappears; (ii) for a fixed value of the flatness
parameter, there are the upper value dc(ϕ) of the poten-
tial asymmetry parameter d and the lower value ac(ϕ)
of the noise amplitude a for the DWs to occur, i.e., the
phenomenon is possible if d < dc(ϕ) and a > ac(ϕ). The
critical parameters dc and ac depend only on the flatness
of noise.

It is remarkable that in the case of large flatness, ϕ >
50, the DWs appear only if the asymmetry of the potential
profile is very large, d < 0.009, whereas in the case of
moderate flatness, such restriction weakens considerably.
For example, if ϕ = 2.8, then the potential profile can be
nearly symmetric, d < 0.49.

It is obvious that in the DWs the intensity and the di-
rection of the current J can be controlled by thermal noise
(see also Fig. 1). Moreover, as in equation (4), the fric-
tion coefficient κ is absorbed into the time scale, so in the
original (unscaled) set-up, the particles of different fric-
tion coefficients are controlled by different switching rates.
According to the suggestions in references [2,7,9,10], this
can lead to an efficient mechanism for the separation of
different types of particles by exploiting the sensitive de-
pendence of the current reversals on the switching rate.
The possible usefulness of the phenomena of four CRs and
DWs was discussed in our earlier papers [24,25]. Com-
paring two possible techniques of particle separation, one
with two CRs (with no use of DWs) [2] and the other with
DWs — one can see certain advantages of the latter. In
the case of two current reversals, the zeros of the current
J(ν) generally occur at more greatly displaced values of
ν than in the case of DWs with 4 CRs. The last feature
of DWs seems to be applicable and useful for the particle
separation schemes with high selectivity within a narrow
ν interval [24], because it enables one to obtain a sharp
negative extremum of J(ν) with a relatively large absolute
value. Although also in the case of usual 2CRs the wide
interval of ν between zeros of J can be made narrower by

varying the remaining system parameters, the really nar-
row intervals occur only in the vicinity of the transition
regimes (i.e., the transition from two current reversals to
zero current reversals), where the absolute value of the
current is very small. Another advantage of the model
with DWs is that the control parameter is temperature,
which can easily be varied in experiments.

Let us note that in the unscaled set-up (3) the mean
value of the velocity of particles can be computed from
the equation

〈v〉 =
kBT

κL
· J

D
, (19)

where the quantities in the first fraction are dimensional,
whereas in the second one dimensionless.

As an example, we consider particles of radius 10−8 m
(e.g. kinesins) in water. At temperature T = 310 K one
obtains from the Stokes’ formula the value of the friction
coefficient κ ≈ 2×10−10 kg/s. Assuming a diffusion regime
Ṽ0 ∼ 10kBT , the spatial period of the ratchet system L =
10 µm and1 J/D ≈ −0.5 , we infer that 〈v〉 = −11 µm/s
or otherwise 〈v〉 ≈ −4 cm/h.

We examined the phenomena of four current rever-
sals and disjunct “windows” in models similar to equa-
tion (1) already in reference [24]. However, in contrast to
the present paper, our earlier paper [24] considered only
the case where the value of the of the flatness parameter of
the trichotomous noise was very large (infinite), and hence
the absolute value of the current very small (infinitesimal).

What concerns the interpretation of the results in
terms of cross-correlation intensity between two noises, it
is important to note that the necessary condition for the
existence of four CRs with DWs considered in the present
paper is that the correlation intensity ρ is negative.

The effect of four CRs seems to suggest that cross-
correlation between colored noises may provide some un-
derstanding as to why structurally very similar motor pro-
teins with two heads, such as kinesin and dynein motor
families, move in opposite direction on the micro-tubules
while being in the same environment and experiencing
the same periodicity, e.g. the conventional kinesin and
ncd [27]. It remains to be seen whether the current rever-
sals due to the effects of cross-correlation between noises
may play a role in cell biology by considering the motion
of motor proteins.

The present work was partly supported by the Estonian Sci-
ence Foundation Grant Nos. 5943 and 6789, and by the Inter-
national Atomic Energy Agency Grant No. 12062.

Appendix: Asymptotic regimes

The asymptotic regimes of the current J have been in
greater detail discussed in references [15,18]. Here we will
outline only the points needed in this paper.

1 For moderate flatness the typical values of Jmin/D, in
the region where the DWs occur, are within the interval
(−0.05,−1).
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First we will briefly review the asymptotic limits of the
current J as a function of ν and D. We will begin with
considering the dependence of the current J on the switch-
ing rate ν. In the case of the adiabatic limit, ν → 0, the
current is positive and changes with temperature as fol-
lows: if trichotomous fluctuations induce transitions back
and forth over the potential barrier, i.e., if a > h0, the cur-
rent J decreases monotonically as the temperature rises.
On the other hand, if trichotomous transitions do not in-
duce transitions in both directions over the barrier, i.e., if
a < h0, the net current exhibits a bell-shaped extremum.
Hence, there is an optimal temperature maximizing the
current.

In the fast-noise limit, ν → ∞, the current can be
expressed as

J ≈ qa2h0|h1|(h2
0 − h2

1)e
1/D

2ν5/2D7/2(e1/D − 1)2
, D �= 0, (20)

so that the current is positive and decays algebraically to
zero in ν−5/2. It can be easily seen that the functional
dependence of the current on the temperature D is of a
resonance-like form. The optimal value of the temperature
that maximizes the current is equal to 0.309. It is notewor-
thy that the limits D → 0 and ν → ∞ do not commute:
the formulas for the current J will be different, depending
on which order the limits are approached, either D → 0
and ν → ∞, or ν → ∞ and D → 0. In the absence of ther-
mal noise, the current decays to zero as J ∼ ± exp(−Cν)
with a positive constant C (see also Refs. [15,18]).

Thus, if D �= 0, at the asymptotic limits of both small
and large ν the function J = J(ν) is always positive.
Hence, there can exist either none or an even number of
current reversals versus ν.

Next we will consider the dependence of the current
J on the temperature D. At high temperatures, D → ∞,
one can show that J is positive and decays algebraically to
zero in D−4 at a rate proportional to a2, or more precisely,

J ≈ q(h0 + h1)a2

180h0|h1|D4
. (21)

The zero-temperature case has been discussed in refer-
ence [15].

At low temperatures, D → 0, in the case a < h0, the
current is positive for all values of q, ν, and d. However,
in the case a > h0, trichotomous fluctuations can induce
the current reversals if certain additional conditions are
met. Remarkably, J is positive at any value of ν if a ≤
|h1|+h0. If a > |h1|+h0, the current reverses to negative
at critical values of the switching rate ν = ν0(q, a, d). For
numerical calculations of the current reversal points νcr

at zero temperature, D = 0, J(νcr) = 0, the following
transcendental equation can be used [15]:

γ1{γ0[α0(a) + α0(−a)] + qa[α0(−a) − α0(a)]} =

γ0{γ1[α1(a) + α1(−a)] + qa[α1(−a) − α1(a)]}, (22)

where

γi =
√

(1 − 2q)h2
i + q2a2,

αi(a) = exp
[
− ν

h2
i (a2−h2

i )
(qa2−h2

i +aγi)
]
− 1, i = 0, 1.

At the low temperature limit, D → 0, the behavior of
the function J = J(D) is not uniform. Depending on the
values of the remaining system parameters, at D = 0 the
function J = J(D) may have a (finite) positive, a (finite)
negative, or a zero value and may start to increase or de-
crease for a while as the temperature D increases [18,25].
What is important about the asymptotic limits in the con-
text of the present paper, where we are interested in the
behavior of the current in the intermediate domains of the
system parameters, is the fact that by changing the tem-
perature, we have to distinguish between the following two
cases. First, if

a2 < a2
0 ≈ 2qh2

0

1 − 2q

{
1 +

3
2

[
exp

(
2
√

2|h1|
3h0

)
− 1

]}

+ (h0 + |h1|)2, (23)

or if a > a0 and ν < νcr 1 or ν > νcr 2, there can occur
either an even number of CRs versus D or none; here the
critical switching rates νcr 2 > νcr 1 are the solutions of
equation (22). Second, if a > a0 and νcr 1 < ν < νcr 2,
there always occur an odd number of CRs. Notably, at
q < 1/4 and

a2 > a2
1 =

(1 − 2q)(h2
0 + h2

1)
1 − 4q

×
[
1 +

√

1 − (h2
0 − h2

1)2(1 − 4q)
(1 − 2q)2(h2

0 + h2
1)2

]
> a2

0 (24)

the critical switching rate νcr 2 tends to infinity at zero
temperature.

For the case of the large flatness parameter ϕ =
1/(2q) � 1, an exhaustive analysis of the phenomenon of
the current reversals is presented in references [18,24,25].
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